50 research outputs found

    Design and functional testing of a multichamber perfusion platform for three-dimensional scaffolds

    Get PDF
    Perfusion culture systems are widely used in tissue engineering applications for enhancing cell culture viability in the core of three-dimensional scaffolds. In this work, we present a multichamber confined-flow perfusion system, designed to provide a straightforward platform for three-dimensional dynamic cell cultures. The device comprises 6 culture chambers allowing independent and simultaneous experiments in controlled conditions. Each chamber consists of three parts: a housing, a deformable scaffold-holder cartridge, and a 7 mL reservoir, which couples water-tightly with the housing compressing the cartridge. Short-term dynamic cell seeding experiments were carried out with MC3T3-E1 cells seeded into polycaprolactone porous scaffolds. Preliminary results revealed that the application of flow perfusion through the scaffold favored the penetration of the cells to its interior, producing a more homogeneous distribution of cells with respect to dropwise or injection seeding methods. The culture chamber layout was conceived with the aim of simplifying the user operations under laminar flow hood and minimizing the risks for contamination during handling and operation. Furthermore, a compact size, a small number of components, and the use of bayonet couplings ensured a simple, fast, and sterility-promoting assembling. Finally, preliminary in vitro tests proved the efficacy of the system in enhancing cell seeding efficiency, opening the way for further studies addressing long-term scaffold colonization

    A compact and automated ex vivo vessel culture system for the pulsatile pressure conditioning of human saphenous veins

    Get PDF
    Saphenous vein (SV) graft disease represents an unresolved problem in coronary artery bypass grafting (CABG). After CABG, a progressive remodelling of the SV wall occurs, possibly leading to occlusion of the lumen, a process termed 'intima hyperplasia' (IH). The investigation of cellular and molecular aspects of IH progression is a primary end-point toward the generation of occlusion-free vessels that may be used as 'life-long' grafts. While animal transplantation models have clarified some of the remodelling factors, the pathology of human SV is far from being understood. This is also due to the lack of devices able to reproduce the altered mechanical load encountered by the SV after CABG. This article describes the design of a novel ex vivo vein culture system (EVCS) capable of replicating the altered pressure pattern experienced by SV after CABG, and reports the results of a preliminary biomechanical conditioning experimental campaign on SV segments. The EVCS applied a CAGB-like pressure (80-120\u2009mmHg) or a venous-like perfusion (3\u2009ml/min, 5\u2009mmHg) conditioning to the SVs, keeping the segments viable in a sterile environment during 7\u2009day culture experiments. After CABG-like pressure conditioning, SVs exhibited a decay of the wall thickness, an enlargement of the luminal perimeter, a rearrangement of the muscle fibres and partial denudation of the endothelium. Considering these preliminary results, the EVCS is a suitable system to study the mechanical attributes of SV graft disease, and its use, combined with a well-designed biological protocol, may be of help in elucidating the cellular and molecular mechanisms involved in SV graft disease

    Adventitial vessel growth and progenitor cells activation in an ex vivo culture system mimicking human saphenous vein wall strain after coronary artery bypass grafting

    Get PDF
    Saphenous vein graft disease is a timely problem in coronary artery bypass grafting. Indeed, after exposure of the vein to arterial blood flow, a progressive modification in the wall begins, due to proliferation of smooth muscle cells in the intima. As a consequence, the graft progressively occludes and this leads to recurrent ischemia. In the present study we employed a novel ex vivo culture system to assess the biological effects of arterial-like pressure on the human saphenous vein structure and physiology, and to compare the results to those achieved in the presence of a constant low pressure and flow mimicking the physiologic vein perfusion. While under both conditions we found an activation of Matrix Metallo-Proteases 2/9 and of microRNAs-21/146a/221, a specific effect of the arterial-like pressure was observed. This consisted in a marked geometrical remodeling, in the suppression of Tissue Inhibitor of Metallo-Protease-1, in the enhanced expression of TGF-β1 and BMP-2 mRNAs and, finally, in the upregulation of microRNAs-138/200b/200c. In addition, the veins exposed to arterial-like pressure showed an increase in the density of the adventitial vasa vasorum and of cells co-expressing NG2, CD44 and SM22α markers in the adventitia. Cells with nuclear expression of Sox-10, a transcription factor characterizing multipotent vascular stem cells, were finally found in adventitial vessels. Our findings suggest, for the first time, a role of arterial-like wall strain in the activation of pro-pathologic pathways resulting in adventitial vessels growth, activation of vasa vasorum cells, and upregulation of specific gene products associated to vascular remodeling and inflammation

    Advanced culture systems for ex vivo human vascular tissue conditioning

    Get PDF
    Our experience shows that using bioengineering approaches facilitates the understanding of vascular physio-pathological mechanisms and, in perspective, will speed up the development of new life-saving treatments. The use of human samples, particularly operating room-derived samples, which would have been otherwise discarded, is a very valuable approach. In line with the 3Rs principles, this methodology is worth the cost of being set up and managed, wherever and whenever possibl

    Versican is differentially regulated in the adventitial and medial layers of human vein grafts

    Get PDF
    Changes in extracellular matrix proteins may contribute significantly to the adaptation of vein grafts to the arterial circulation. We examined the production and distribution of versican and hyaluronan in intact human vein rings cultured ex vivo, veins perfused ex vivo, and cultured venous adventitial and smooth muscle cells. Immunohistochemistry revealed higher levels of versican in the intima/media compared to the adventitia, and no differences in hyaluronan. In the vasa vasorum, versican and hyaluronan associated with CD34 + progenitor cells. Culturing the vein rings for 14 days revealed increased versican immunostaining of 30–40% in all layers, with no changes in hyaluronan. Changes in versican accumulation appear to result from increased synthesis in the intima/media and decreased degradation in the adventitia as versican transcripts were increased in the intima/media, but unchanged in the adventitia, and versikine (the ADAMTS-mediated cleavage product of versican) was increased in the intima/media, but decreased in the adventitia. In perfused human veins, versican was specifically increased in the intima/media in the presence of venous pressure, but not with arterial pressure. Unexpectedly, cultured adventitial cells express and accumulate more versican and hyaluronan than smooth muscle cells. These data demonstrate a differential regulation of versican and hyaluronan in human venous adventitia vs. intima/media and suggest distinct functions for these extracellular matrix macromolecules in these venous wall compartments during the adaptive response of vein grafts to the arterial circulation

    Dihydroartemisinin-Piperaquine and Artemether-Lumefantrine for Treating Uncomplicated Malaria in African Children: A Randomised, Non-Inferiority Trial

    Get PDF
    BACKGROUND: Artemisinin combination therapies (ACTs) are currently the preferred option for treating uncomplicated malaria. Dihydroartemisinin-piperaquine (DHA-PQP) is a promising fixed-dose ACT with limited information on its safety and efficacy in African children. METHODOLOGY/PRINCIPAL FINDINGS: The non-inferiority of DHA-PQP versus artemether-lumefantrine (AL) in children 6-59 months old with uncomplicated P. falciparum malaria was tested in five African countries (Burkina Faso, Kenya, Mozambique, Uganda and Zambia). Patients were randomised (2:1) to receive either DHA-PQP or AL. Non-inferiority was assessed using a margin of -5% for the lower limit of the one-sided 97.5% confidence interval on the treatment difference (DHA-PQP vs. AL) of the day 28 polymerase chain reaction (PCR) corrected cure rate. Efficacy analysis was performed in several populations, and two of them are presented here: intention-to-treat (ITT) and enlarged per-protocol (ePP). 1553 children were randomised, 1039 receiving DHA-PQP and 514 AL. The PCR-corrected day 28 cure rate was 90.4% (ITT) and 94.7% (ePP) in the DHA-PQP group, and 90.0% (ITT) and 95.3% (ePP) in the AL group. The lower limits of the one-sided 97.5% CI of the difference between the two treatments were -2.80% and -2.96%, in the ITT and ePP populations, respectively. In the ITT population, the Kaplan-Meier estimate of the proportion of new infections up to Day 42 was 13.55% (95% CI: 11.35%-15.76%) for DHA-PQP vs 24.00% (95% CI: 20.11%-27.88%) for AL (p<0.0001). CONCLUSIONS/SIGNIFICANCE: DHA-PQP is as efficacious as AL in treating uncomplicated malaria in African children from different endemicity settings, and shows a comparable safety profile. The occurrence of new infections within the 42-day follow up was significantly lower in the DHA-PQP group, indicating a longer post-treatment prophylactic effect. TRIAL REGISTRATION: Controlled-trials.com ISRCTN16263443

    Refining Numerical Constants in First Order Logic Theories

    No full text
    corecore